ChE SEMINAR: “The Catalytic Science of Making Up and Breaking Up Dinitrogen”

William Schneider - Notre Dame

WHERE: North Campus Research Complex Building 32, B32 Auditorium show on map

WHEN: October 6, 2022 1:30 pm-2:30 pmADD TO CALENDAR

ChE SEMINAR: “The Catalytic Science of Making Up and Breaking Up Dinitrogen”: William Schneider - Notre Dame

The ChE seminar series features guest speakers. U-M ChE faculty and graduate students are especially encouraged to attend.

ABSTRACT:
The catalytic chemistry of nitrogen is inextricably linked with mankind’s use of energy. Large scale nitrogen fixation (N2 → NH3) revolutionized the production of fertilizer, enabled the population explosion of the 20th century, and now consumes several percent of the world’s energy annually production. NOx reduction (NOx → N2) is integral to reducing the adverse impacts of transportation on urban air quality and health. These and other technologies all depend at their heart on heterogeneous catalysis. In this presentation I will discuss the insights gained by applying molecular-level models and concepts to nitrogen catalytic chemistry. Examples will be drawn from our work on the selective catalytic reduction of NOx in Cu-exchanged zeolites, a problem that has led us to rethink the factors that govern reactivity in zeolites, from NO and NH3 oxidation, problems that have caused us to revisit how we model reactions at metal surfaces, and from N2 reduction, where we are exploring the potential to bypass the constraints presented by common catalysts by combining with a non-thermal plasma.

BIO:
Bill Schneider’s expertise is in chemical applications of density functional theory (DFT) simulations. After receiving his PhD in Inorganic Chemistry from the Ohio State University, he began his professional career in the Ford Motor Company Research Laboratory working on a variety of problems related to the environmental impacts of automobile emissions. At Ford he developed an interest in the catalytic chemistry of NOx for diesel emissions control, and he has published extensively on the chemistry and mechanisms of NOx decomposition, selective catalytic reduction, trapping, and oxidation catalysis. In 2004 he joined the Chemical and Biomolecular Engineering faculty at the University of Notre Dame as an Associate Professor. At Notre Dame he has continued his research into the theory and molecular simulation of heterogeneous catalysis, with particular emphasis on reaction environment effects on catalytic materials and their implications for mechanism and reactivity. He was named the H. Clifford and Evelyn A. Brosey Chair in 2016 and Dorini Family Chair and Chair of the Department of Chemical and Biomolecular Engineering in 2020. He has co-authored more than 185 papers and book chapters, is a Fellow of the American Association for the Advancement of Science and an Executive Editor of The Journal of Physical Chemistry.